Example 3.11

A 250 mm thick simply supported reinforced concrete slab spans 5 m. Design a suitable slab using grade 40 concrete and high yield reinforcement to support the following characteristic loads:

Imposed 4.0 kN/m² Finishes 0.5 kN/m² Concrete 24 kN/m3

The slab will be in a mild exposure situation.

Consider a 1 m width of slab as shown in Figure 3.28. In this example it is necessary first to calculate the ultimate design load and ultimate bending moment.

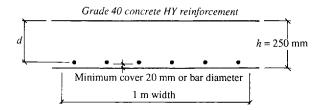


Figure 3.28 Cross-section through slab considered for design

Loading

Characteristic imposed load = 4 kN/m^2

Characteristic imposed UDL $Q_k = 4 \times 5 \times 1 = 20 \text{ kN}$

Characteristic dead load: finishes 0.5 self-weight
$$24 \times 0.25$$
 $\frac{6.0}{6.5 \text{ kN/m}^2}$

Characteristic dead UDL $G_k = 6.5 \times 5 \times 1 = 32.5 \text{ kN}$

ULS imposed UDL
$$\gamma_f Q_k = 1.6 \times 20$$
 32.0 kN
ULS dead UDL $\gamma_f G_k = 1.4 \times 32.5$ 45.5 kN
ULS total UDL 77.5 kN

The slab load diagram is shown in Figure 3.29.

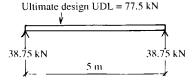


Figure 3.29 Slab load diagram

Bending

$$M_{\rm u} = \frac{WL}{8} = \frac{77.5 \times 5}{8} = 48.44 \,\mathrm{kN}\,\mathrm{m} = 48.44 \times 10^6 \,\mathrm{N}\,\mathrm{mm}$$

Use the BS 8110 simplified stress block formulae. First,

$$K = \frac{M}{bd^2 f_{\text{cu}}} \leqslant K' = 0.156$$

Let us assume that 12 mm diameter main bars will be used with a cover of 20 mm. Hence the effective depth provided is

$$d = 250 - 20 - \frac{12}{2} = 224 \,\mathrm{mm}$$

Therefore

$$K = \frac{48.44 \times 10^6}{1000 \times 224^2 \times 40} = 0.024 < K' = 0.156$$
$$z = d[0.5 + \sqrt{(0.25 - K/0.9)}]$$
$$= d[0.5 + \sqrt{(0.25 - 0.024/0.9)}] = 0.97d > 0.95d$$

Therefore use 0.95d. Next,

$$A_{\rm s}$$
 required = $\frac{M}{0.87 f_{\rm v} z} = \frac{48.44 \times 10^6}{0.87 \times 460 \times 0.95 \times 224} = 569 \,\rm mm^2$ per metre width

Provide 12 mm diameter HY main bars at 175 mm centres (A_s per metre = 646 mm²).

Minimum area of distribution steel = $\frac{0.13}{100} \times 1000 \times 250 = 325 \text{ mm}^2 \text{ per metre run.}$

Provide 10 mm diameter HY distribution bars at 225 mm centres (A_s per metre = 349 mm²).

Cracking

Check the maximum bar spacing needed to satisfy the cracking SLS. The overall depth h = 250 > 200 mm for HY reinforcement. However, the percentage of main reinforcement provided is not greater than 0.3 per cent:

$$\frac{100A_{\rm s}}{bd} = \frac{100 \times 646}{1000 \times 224} = 0.288 < 0.3 \text{ per cent}$$

Therefore the clear distance between bars should not exceed the lesser of $3d = 3 \times 224 = 672 \,\text{mm}$ or 750 mm. Therefore both the main and distribution bar spacing provided is satisfactory.

Shear

Check the shear ULS. The ultimate design shear force (at support) is

$$V = \frac{\text{ultimate UDL}}{2} = \frac{77.5}{2} = 38.75 \,\text{kN}$$